

ICC-ES Listing Report

ELC-4901 Issued May 2023 This listing is subject to renewal May 2024.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council[®]

CSI: DIVISION: 03 00 00-CONCRETE Section: 03 16 00-Concrete Anchors

> DIVISION: 05 00 00-METALS Section: 05 05 19—Post-Installed Concrete Anchors

Product Certification System:

The ICC-ES product-certification system includes evaluating reports of tests of standard manufactured products, prepared by accredited testing laboratories and provided by the listee, to verify compliance with applicable codes and standards. The system also involves factory inspections, and assessment and surveillance of the listee's quality system.

Product: Chemofast EP 800 Adhesive Anchor System in Cracked and Uncracked Concrete

Listee: CHEMOFAST ANCHORING GmbH

Compliance with the following standards:

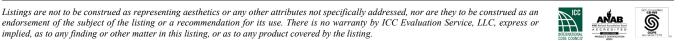
Annex D, Anchorage, of CSA A23.3-19, Design of Concrete Structures, CSA Group.

Compliance with the following codes:

Chemofast EP 800 adhesive anchor system in cracked and uncracked concrete, as described in this listing report, are in conformance with CSA A23.3-19, Annex D, as referenced in the applicable section of the following code edition:

National Building Code of Canada[®] 2020 Applicable Section: Division B, Part 4, Section 4.3.3.

Description of adhesive anchor system:


The Chemofast EP 800 adhesive anchor system is comprised of Chemofast EP 800 two-component adhesive filled in cartridges, static mixing nozzles and manual or powered dispensing tools, hole cleaning equipment and adhesive injection accessories. The Chemofast EP 800 adhesive may be used with continuously threaded steel rods or steel reinforcing bars. The primary components of the Chemofast EP 800 adhesive anchor system, including the Chemofast EP 800 adhesive cartridge, static mixing nozzle, dispenser, and steel anchor elements, are shown in Figure 1.

THREADED ROD

12521212121212121212121212121212121212

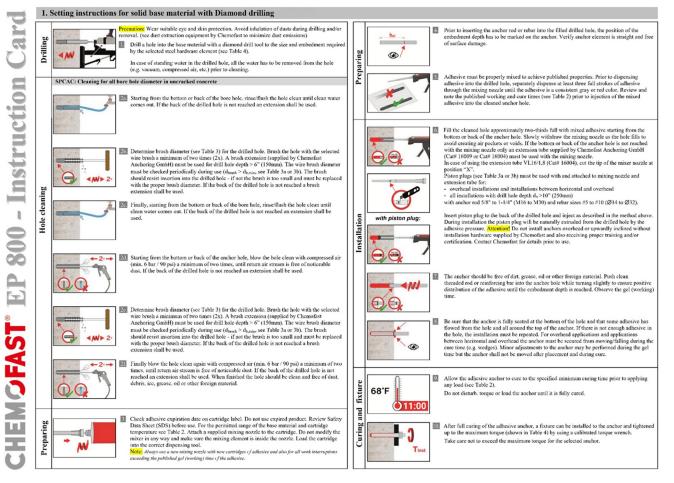
REINFORCING BAR

implied, as to any finding or other matter in this listing, or as to any product covered by the listing.

FIGURE 1—EP 800 ADHESIVE ANCHOR SYSTEM

The Chemofast EP 800 adhesive is an injectable two-component epoxy adhesive. The two components are kept separate by means of a labeled dual-cylinder cartridge. The two components combine and react when dispensed through a static mixing nozzle, supplied by Chemofast, which is attached to the cartridge. Chemofast EP 800 is available in 9.5-ounce (280ml), 13.5-ounce (400ml), 20 up to 20.5-ounce (600 up to 610ml) and 50.5-ounce (1500 ml) cartridges. Each cartridge label is marked with the adhesive expiration date. The shelf life, as indicated by the expiration date, applies to an unopened cartridge stored in a dry, dark, and cool environment.

Identification:


- 1. The ICC-ES mark of conformity, electronic labeling, or the listing report number (ELC-4901) along with the name, registered trademark, or registered logo of the report holder must be included in the product label.
- 2. In addition, Chemofast EP 800 adhesive is identified by packaging labeled with the manufacturer's name (Chemofast Anchoring GmbH) and address, anchor name, the lot number, the expiration date, and the listing report number (ELC-4901). Threaded rods, nuts, washers, and deformed reinforcing bars are standard steel anchor elements and must conform to applicable national or international specifications as set forth in Tables 2 and 3 of this report.
- 3. The report holder's contact information is the following:

CHEMOFAST ANCHORING GMBH HANNS-MARTIN-SCHLEYER-STRASSE 23 47877 WILLICH GERMANY +49 (2154) 8123-0 www.chemofast.de info@chemofast.de

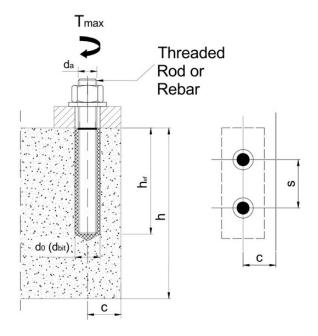
Installation: Installation parameters are illustrated in Figure 4 and Table 1. Installation of the Chemofast EP 800 Adhesive Anchor System must conform to the manufacturer's printed installation instructions included in each unit package as described in Figure 2. The adhesive anchor system may be installed in downwards, horizontally and upwardly inclined orientation applications (e.g. overhead). If the bottom or back of the bore hole is not reached with the mixing nozzle, a mixer extension tube, supplied by Chemofast must be attached to the mixing nozzle as described in Figure 2 of this report. Additionally, horizontal or upwardly inclined orientation applications of all bore hole depths, and downwards applications with a bore hole depth of more than 10 inch (250 mm) are to be installed using piston plugs installed in the specified hole diameter and attached to the mixing nozzle and extension tube supplied by Chemofast as described in Figure 2.

FIGURE 2—INSTALLATION INSTRUCTIONS

3a. Para	ameter	cleaning and	l setti	ng to	ols (1	fract	ional	sizes)								3b. Pa	iram	eter (cleani	ng and	d sett	ing too	ls (met	ric siz	es)						
						mm		nn M	mų	ł			660	D				000000	L'ULULU	8	ļ			ann		h.	hill	4			6	
Threaded Rod	Rebar	d ₀ Drill bit - Ø		d _b Brush	a			d _{b,min} in. Brus			Cat. #		iston	Cat	t. #		Threaded Rod	R	ebar	d Drill b			d _b Brush - 1	7		db,n	in Ish - Ø		Cat. #		iston plug	Cat. #
[inch]	[inch]	[inch]	[mm		[incl	ы	[mn		[inch]	-	[-]		No.)	[-	1		[mm]	ſr	nm]	[m		[m		[inch]	[mn		[inch		[-]		No.)	[-]
3/8"	- Enteng	7/16	13.5		0.53		11.4		0.46		16111	- "	(0.)				M10		-	1		13		0.53	12.		0.41		1611			
	#3	1/2	14.3		0.5		13.2		0.52		16112	1					M12		10	1	4	15	.5	0.61	14.	5	0.49		1611.	3	No plug	s required
1/2"	-	9/16	16.3		0.6	5	14.		0.58		16114	1 1	Vo plug	s require	ed				12	1		17		0.69	16.		0.57		1611:			
	#4	5/8	18.3		0.72		16.		0.65		16116	1					M16		14	1		20		0.79	18.		0.65		1611		18	40340
5/8"		11/16	20.0	0	0.79	9	18.0	0	0.71		16117	1	1/16	403	355		-	-	16	2		22		0.87	20.		0.73		16119		20	40342
	#5	3/4	21.5	5	0.8	5	19.	5	0.78		16118		3/4	403	341	-	M20		- 20	2		24		0.94	22.		0.81		1612		22 25	40343 40345
3/4"	#6	7/8	24.8	8	0.9	8	23.0	0	0.91	-	16121		7/8	403	343		M24		20	2		30		1.18	24.		0.89		1612		25	40345
7/8"	#7	1	28.5	5	1.13	2	26.3	2	1.03		16123	-	1	403	345		M27			3		31		1.25	30.		1.12		1612:		30	40347
1"	#8	1 1/8	31.8	8	1.2	5	29.	5	1.16		16125	1	1/8	403	346				25	3		34		1.34	32.		1.20		1612		32	40348
1-1/4"	#9	1 3/8	38.2	2	1.50	0	35.1	8	1.41		16128	1	3/8	403	349		M30		28	3	5	37	.0	1.46	35.	5	1.28		1612	7	35	40349
-	#10	1 1/2	41.4	4	1.6	3	39.0	0	1.54		16129	1	1/2	403	350				32	4		43		1.71	40.		1.40		1613		40	40351
	#11	1 3/4	47.0	0	1.8	5	45.0	0	1.77		16080	1	-3/4	403	352	L			36	4	5	47	.0	1.85	45.	0	1.77		1608)	45	40352
4. Anch	or pro	perty / Settin	g info	rmat	tion (frac	tiona	l and	metr	ic siz	es)																					
			0					actiona				inal th	readed	rod (m	etric)	_	1		Re	inforcin	g bar (fi	raction	al)	_	1		R	einforc	ing b	ar (metri	c)	
						nch; ft						1	nm; Nr	n						in	ch; ftlb.								nm; N	m		
	Anchor				5/8"	3/4"			1-1/4"		M12	M16	M20	M24				#4	#5	#6	#7	#8	#9 #		Ø 10	Ø 12		Ø 16	Ø 20			
$l_s = Nominal$				0.500			0.875			10	12	16	20	24	27	30		1/2	5/8	3/4	7/8		-1/8 1-1			12	14	16	20	25	28	32 36
		SI drill bit size	7/16	9/16	11/16	7/8	1	1-1/8	1-3/8	12	14	18	22	28	30	35	1/2	5/8	3/4	7/8	1	1-1/8	-3/8 1-1	/2 1-3/4	14	16	18	20	25	32	35	40 45
arameter val																																
r _{max} = Maxim			202)	30	44	66	96	147	221	20	40	80	120	170	250			30	44	66			185 22		20	40	45	80	120		250	300 -
agfonin = Minir				2-3/4				-	5	60	70	80	90	96	108	120	-	2-3/4	3-1/8		3-1/2		1-1/2 5		60	70	75	80	90	100	112	128 -
i _{of,max} = Maxi		edment	7-1/2		12-1/2		17-1/2		25	200	240	320	400	480	540	600	-	10	12-1/2				2-1/2 25		200	240	280	320	400	500	560	640 -
min = Min. sp				2-1/2	3			4-3/4		50	60	80	95	115	130	145	-		3				5-1/4 5-7		50	60	70	80	95	120	135	150 -
		ce (100% T _{mix})	1-5/8	1-3/4	2			2-3/4		40	45	55	60	70	75	80		1-3/4	2			2-3/4	3 3-1	/4 -	40	45	50	55	60	70	75	85 -
main = Min. economic main = Minimum (main = Minimum (main main main main main main main main		ce (45% T _{max} ¹⁾)	-	1.14			.75		2.75	h	- + 30			15	,	70		/ 4		1.3		1.21	2.75	-		$\frac{h_{ef}+3}{h_{ef}+3}$	0 1	4	5		7	- 0
		t-installed rebar	$h_{ef} + 1$	-1/4			$h_{ef} + 2$	d_{σ}		nej	+ 30			$h_{ef} + 2d$	lo		$h_{ef} +$	1-1/4			n_{e}	$s + 2d_o$				$n_{ef} + 3$	0			h_{ef} +	$2a_0$	
elonia = Minir																	2.2/8	2.24	2.1/0	3-1/2	2.1/2	4 4	-1/2 5	5-1/2	60	70	75	80	90	100	112	128 12
		edment (PIR)				-							-				2-3/8		37-1/2				7-1/2 7:	_	-	720	840		1200	-	1680	1920 216
$\frac{1}{1}$ Smin = 5xc		or ASTM 36 and F1	554 Grad	le 36. T		- 5 ftlb			0				-				22-172	50	57-1/2	45	52-1/2	00 0	7-1/2 73	0 02-1/2	000	720	840	900	1200	1500	1080	1920 210
		hesive anch						ries																6.	Post	-ins	talle	d ret	ar	h _{ef} ≥2	20d	
njection to			or 5,5	1	idge s			Extra n		Dista	n Plug		C		- 4 - 1 -	1		Ente	nsion t	uh a	Easter		ith wood	-		- 1	niection	_	- 1	ler		Extension
injection to	515			Caru	luge s	ystem		nozzles		1 ISLO	ii i iug			mpress in. 90 p		HOZZIG	e		0/0,75	ube	handl		illi wood	Caru	luge		pols	us		ef		tube
,5 fl. oz. lispenser	Cat. #	30006 Manual tool		EP800 (280m	0 9,5 fl. 1L)	. 0Z.				6										(9,5 to	20.5 fl. o	z. M	anual too	ol ≤		27-1/2 [i 700 [mn		VL10/0,75
3,5 fl. oz. lispenser	-	30215 Manual tool		(400n			,	Mixing	nozzle	9	5	D	-			-	12		#16009	·	(Cat#1			9,5 to 50.5 fl	20.5 fl. o	z. Pr	eumatic	≤	10	51-1/2 [i 1300 [m		(Cat.#16009 or
0 to 20.5 fl. lispenser		30216 Manual tool 30220 Pneumatic to			0 20 to to 610 r			Cat. #40		C	5-								nsion t 6/1,8	ube	Brush	n exten:	sion	9,5 to	20.5 fl. o	z. Pr	eumatic	≤	#8	39-1/2 [i	nch]	VL16/1,8 (Cat.#16004
0.5 fl. oz. lispensers	Cat. #	30202 Pneumatic to	lool	EP 80 (1500	0 50.5 mL)	fl. oz.				(Cat#	Table 3a	or 3b)	If th	e bore ho nsion sha	le groun	id is not	reached an	(Cat.	#16004	0	(Cat#1	6131)		50.5 fl		to	ol	[n ≤ i	m] =	1000 [m		VL16/1.8
	_		٨	-	®	Che	mofas	t Anch	oring G					hemof				1 Carlot)		50.5 fl	. oz.	to			36 m]	2160 [m		(Cat.#1600

FIGURE 2—INSTALLATION INSTRUCTIONS (Continued)

www.chemofast.de P: +49 (2154) 8123-0 F: +49 (2154) 8123-333 [Rev. d]


Chemofast Anchoring GmbH Hanns-Martin-Schleyer-Str. 23 47877 Willich, Germany

CHEMØ**FAST**°

Drilling and cleaning	Tool	Accessories and Shrouds	Vacuum
Dust extraction system for standard drilling and cleaning equipment		SDS-Plus and SDS-Max Drill Bit	
		Capture Device CAT# 01128	Dust Extractor
Chemofast hollow drill bit system	Rotary Drill Hammer	Heller Duster Expert SDS-Plus and SDS-Max Hollow Drill Bit	Class M vacuum with a minimum air flow rating of 90cfm (150m ³ /h resp. 42l/s).

FIGURE 3—CHEMOFAST DUST REMOVAL DRILLING SYSTEM WITH HEPA DUST EXTRACTOR OPTIONS

Anchor setting information:

FIGURE 4—INSTALLATION PARAMETERS FOR THREADED RODS AND REINFORCING BARS

TABLE 1—INSTALLATION TORQUE SUBJECT TO EDGE DISTANCE

For anchors that will be torqued during installation, the maximum torque, T_{max} , must be reduced for edge distances less than five anchor diameters (5d). T_{max} is subject to the edge distance, c_{min} , and anchor spacing, s_{min} , and shall comply with the following requirements:

INSTALLAT	ION TORQUE SUBJE	ECT TO EDGE D	ISTANCE
NOMINAL ANCHOR SIZE, D	MINIMUM EDGE DISTANCE, C _{min}	MINIMUM ANCHOR SPACING, Smin	MAXIMUM TORQUE, T _{max}
⁵ / ₈ in. to 1 in. M16 to M27	1.75 in. (45 mm)	54	0.45 T
1 ¹ / ₄ in. M30	2.75 in. (70 mm)	5d	0.45·T _{max}

For values of T_{max} , see Figure 2 of this report.

Ultimate Limit States Design:

Design resistance of anchors for compliance with the 2020 NBCC must be determined in accordance with CSA A23.3-19 Annex D, and this listing report.

Design parameters provided in Tables 2 through 15 of this listing report are based on the 2020 NBCC (CSA A23.3-19). The limit states design of anchors must comply with CSA A23.3-19 D.5.1, except as required in CSA A23.3-19 D.4.3.1.

Material resistance factors must be ϕ_c = 0.65 and ϕ_s = 0.85 in accordance with CSA A23.3-14 Sections 8.4.2 and 8.4.3, and resistance modification factor, *R*, as given in CSA A23.3-19 Section D.5.3, and noted in Tables 4, 5, 7, 8, 10, 11, 13 and 14 of this listing report, must be used for load combinations calculated in accordance with Division B, Part 4, Section 4.1.3 of the 2020 NBCC, or Annex C of CSA A23.3-19. The nominal strength, *N*_{sa} or *V*_{sa}, in Tables 4, 7, and 10 of this listing report must be multiplied by ϕ_s and *R* to determine the factored resistance, *N*_{sar} or *V*_{sar}.

The bond strength must be adjusted by the permissible installation condition factors for dry concrete, R_d , water-saturated concrete, R_{ws} , water-filled holes, R_{wf} , and underwater concrete, R_{uw} , for the corresponding installation conditions as given in Tables 6, 9, 12 and 15.

For anchors to be installed in seismic regions described in NBCC 2020. The factored resistance in shear, V_{ser} , must be adjusted by $\alpha_{V,seis}$ as given in tables 4, 7, and 10 for the corresponding anchor steel. The nominal bond strength $\tau_{R,cr}$ must be adjusted by $\alpha_{V,seis}$ a as given in Tables 6, 9, 12 and 15 for threaded rods.

	THREADED ROD SPECIFICATION		MINIMUM SPECIFIED ULTIMATE STRENGTH, f _{uta}	MINIMUM SPECIFIED YIELD STRENGTH 0.2 PERCENT OFFSET, f _{ya}	f _{uta} /f _{ya}	ELONGATION, MIN. PERCENT ¹¹	REDUCTION OF AREA, MIN. PERCENT	SPECIFICATION FOR NUTS ¹²
	ASTM A193 ² Grade B7 all sizes	MPa	862	724	1.19	16	50	ASTM A194 / A563 Grade DH
	ASTM A36 ³ / F1554 ⁴ , Grade 36 all sizes	MPa	400	250	1.61	23	40	ASTM A194 / A563
	ASTM F1554 ⁴ Grade 55	MPa	517	380	1.36	23	40	Grade A
STEEL	ASTM F1554 ⁴ Grade 105	MPa	860	724	1.19	15	45	
CARBON STEEL	ASTM A449 ⁵ ³ / ₈ to 1 in.	MPa	830	635	1.30	14	35	ASTM A194 / A563 Grade DH
CÞ	ASTM A449 ⁵ 1 ¹ / ₄ in	MPa	720	560	1.30	14	35	
	ASTM F568M ⁶ Class 5.8 (equivalent to ISO 898-1)	MPa	500	400	1.25	10	35	ASTM A563 Grade DH DIN 934 (8-A2K) ¹³
	ISO 898-1 ⁷ Class 5.8	MPa	500	400	1.25	22	-	EN ISO 4032 Grade 6
	ISO 898-1 ⁷ Class 8.8	MPa	800	640	1.25	12	52	EN ISO 4032 Grade 8
	ASTM F593 ⁸ CW1 ³ / ₈ to ⁵ / ₈ in. (316)	MPa	690	450	1.54	20	-	ASTM F594 Alloy
TEEL	ASTM F593 ⁸ CW2 ³ / ₄ to 1 ¹ / ₄ in. (316)	MPa	590	310	1.89	25	-	Group 1, 2 or 3
STAINLESS STEEL	ASTM A193/A193M ⁹ Grade B8/B8M2, Class 2B	MPa	655	515	1.27	25	40	ASTM A194/A194M
STAIN	ISO 3506-1 ¹⁰ A4-70 (M8-M24)	MPa	700	450	1.56	40	-	EN ISO 4032
	ISO 3506-1 ¹⁰ A4-50 (M27-M30)	MPa	500	210	2.38	40	-	EN ISO 4032

TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON AND STAINLESS STEEL THREADED ROD MATERIALS¹

¹Adhesive must be used with continuously threaded carbon or stainless steel rod (all-thread) having thread characteristics complying with ANSI B1.1 UNC Coarse Thread Series.

²Standard Specification for Alloy-Steel and Stainless steel Bolting Materials for High temperature of High Pressure service and Other Special Purpose Applications.

³Standard Specification for Carbon Structural steel

⁴Standard Specification for Anchor Bolts, Steel 36, 55 and 105-ksi Yield Strength.

⁵Standard Specification for Hex Cap Screws, Bolts and Studs, Heat Treated, 120/105/50 ksi Minimum Tensile Strength, General Use.

⁶Standard Specification for Carbon and Alloy Steel external Threaded Metric Fasteners.

⁷Mechanical properties of fasteners made of carbon steel and alloy steel - Part 1: Bolts, Screws and Studs. ⁸Standard Specification for Alloy-Steel and Stainless Steel Bolting for High Temperature or High Pressure Service and Other Special Purpose Applications.

⁹Standard Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs.

¹⁰Mechanical properties of corrosion-resistant stainless steel fasteners - Part 1: Bolts, Screws and Studs.

¹¹Based on 2-in. (50 mm) gauge length except for ASTM A193, which is based on a gauge length of 4d.

¹²Nuts and washers of other grades and style having specified proof load stress greater than the specified grade and style are also suitable. Nuts must have ¹³Nuts for metric rods.

TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON REINFORCING BARS

REINFORCING SPECIFICATION	UNITS	MINIMUM SPECIFIED ULTIMATE STRENGTH, futa	MINIMUM SPECIFIED YEILD STRENGTH, fya
ASTM A615 ¹ , A767 ³ Grade 75	MPa	690	520
ASTM A615 ¹ , A767 ³ , A996 ⁴ Grade 60	MPa	620	414
ASTM A706 ² , A757 ³ Grade 60	MPa	550	414
ASTM A615 ¹ , Grade 40	MPa	415	275
DIN 488 ⁵ BSt 500	MPa	550	500

¹Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.

²Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement.

³Standard specification for Zinc-Coated (Galvanized) steel Bars for Concrete Reinforcement.

⁴Standard specification for Rail-Steel and Axle-steel Deformed bars for Concrete Reinforcement.

⁵Reinforcing steel, reinforcing steel bars; dimensions and masses.

	FORMATION	O marked	Unite			Nominal F	Rod Diamete	er (inch)		
DESIGN IN	FORMATION	Symbol	Units	³ /8	1/2	⁵ /8	3/4	7/ ₈	1	1 ¹ / ₄
Threaded ro	od O.D.	da	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.250 (31.8)
Threaded ro	od effective cross-sectional area	A _{se}	in.² (mm²)	0.0775 (50)	0.1419 (92)	0.2260 (146)	0.3345 (216)	0.4617 (298)	0.6057 (391)	0.9691 (625)
<u>_</u>	Nominal strength as governed by steel	N _{sa}	kN	20.0	36.6	58.3	86.3	119.1	156.3	250.0
ASTM A36/F1554, Grade 36	strength (for a single anchor)	Vsa	kN	12.0	22.0	35.0	51.8	71.4	93.8	150.0
/F1 /F1 ade	Reduction factor for seismic shear	α _{V,seis}	-				0.70			
Gr 436 A	Resistance modification factor for tension ²	R	-				0.80			
4	Resistance modification factor for shear ²	R	-				0.75			
4	Nominal strength as governed by steel	N _{sa}	kN	25.9	47.6	75.5	111.7	154.1	202.1	323.1
155 55	strength (for a single anchor)	Vsa	kN	15.5	28.6	45.3	67	92.5	121.3	193.9
ASTM F1554 Grade 55	Reduction factor for seismic shear	α _{V,seis}	-				0.70			
Gra STA	Resistance modification factor for tension ²	R	-				0.80			
Ř	Resistance modification factor for shear ²	R	-				0.75			
~ 4	Nominal strength as governed by steel	Nsa	kN	43.1	78.9	125.7	186	256.7	336.8	538.8
.19; B7 155 105	strength (for a single anchor)	Vsa	kN	25.9	47.3	75.4	111.6	154	202.1	323.3
A D D D D D D D D D D D D D D D D D D D	Reduction factor for seismic shear	α _{V,seis}	-				0.70			
ASTM A149 ASTM A149 ASTM F1554 ASTM F1554 Grade 105 Ba a a a a a a a a a a a a a a a a a a	Resistance modification factor for tension ²	R	-				0.80			
A & A	Resistance modification factor for shear ²	R	-				0.75			
	Nominal strength as governed by steel	Nsa	kN	41.4	76.2	120.9	178.8	246.7	323.7	450
No	strength (for a single anchor)	V _{sa}	kN	24.8	45.7	72.5	107.3	148	194.2	270
٩V	Reduction factor for seismic shear	α _{V,seis}	-				0.70	1	1	
É.	Resistance modification factor for tension ²	R	-				0.80			
¥	Resistance modification factor for shear ²	R	-				0.75			
5	Nominal strength as governed by steel	Nsa	kN	25	46	73	108	149	195.5	312.5
680	strength (for a single anchor)	V _{sa}	kN	15	27.6	43.8	64.8	89.4	117.3	187.5
ASTM F568M Class 5.8	Reduction factor for seismic shear	α _{V,seis}	-	-			0.70			
ZI ⊠	Resistance modification factor for tension ³	R	-				0.70			
AS	Resistance modification factor for shear ³	R	-				0.65			
	Nominal strength as governed by steel	Nsa	kN	34.5	63.1	100.5	126.5	174.6	229	366.4
593 lest	strength (for a single anchor)	Vsa	kN	20.7	37.9	60.3	75.9	104.7	137.4	219.8
A F.	Reduction factor for seismic shear	α _{V,seis}	-				0.70			
ASTM F593 CW Stainless	Resistance modification factor for tension ³	R R	-				0.70			
S A	Resistance modification factor for shear ³	R	-				0.65			
	Nominal strength as governed by steel	Nsa	kN	32.8	60.3	95.6	141.5	195.2	256.1	409.4
ASTM A193/A193M Grade B8/B8M2,	strength (for a single anchor)	V _{sa}	kN	19.7	36.2	93.0 57.4	84.9	195.2	153.7	245.6
ASTM 193/A193 Grade B8/B8M2,	Reduction factor for seismic shear	QV.seis	-	10.7	00.2	. т	0.70		100.7	270.0
833/ AS	Resistance modification factor for tension ²	R R	-				0.80			
			-	1			0.00			

¹Values provided for common rod material types based on specified strengths and calculated in accordance with CSA A23.3-19 Eq. D.2 and Eq. D.3, as applicable. Nuts and washers must comply with requirements for the rod.

²The tabulated value of material resistance factors ϕ_c and ϕ_s , and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2020 NBCC or Annex C of CSA A23.3-19 are used. Values correspond to ductile steel elements.

³The tabulated value of material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2020 NBCC or Annex C of CSA A23.3-19 are used. Values correspond to brittle steel elements.

TABLE 5—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR CHEMOFAST HOLLOW CARBIDE DRILL BIT)¹

	0		Nominal Rod Diameter (inch)												
DESIGN INFORMATION	Symbol	Units	³ /8	1/2	⁵ /8	³ /4	⁷ /8	1	1 ¹ /4						
Effectiveness factor for cracked concrete	k _{c,cr}	SI (in-lb)				7 (17)									
Effectiveness factor for uncracked concrete	k _{c,uncr}	SI (in-lb)				10 (24)									
Min. anchor spacing	S _{min}	mm (in.)	48 (1 ⁷ / ₈)	60 (2 ³ / ₈)	76 (3)	95 (3 ³ / ₄)	108 (4 ¹ / ₄)	121 (4 ³ / ₄)	149 (5 ⁷ / ₈)						
Min. edge distance	Cmin	mm (in)	41 (1 ⁵ / ₈)	44 (1 ³ / ₄)	51 (2)	60 (2 ³ / ₈)	64 (2 ¹ / ₂)	70 (2 ³ / ₄)	82 (3 ¹ / ₄)						
(in.) $(1^{5}/_{8})$ $(1^{3}/_{4})$ See Table 1 of this report for small							t for smaller edg	e distance with	0.45 T _{max}						
Min. member thickness	h _{min}	mm (in.)		+ 30 ⊦ 1¹/₄)			$h_{ef} + 2d_0^{3}$								
Critical edge distance - splitting (for uncracked concrete) ²	Cac	-				2h _{ef}									
Critical anchor spacing – splitting	Sac	-				2.c _{ac}									
Resistance modification factor for tension, concrete failure modes. Condition B ²	R	-			1.00										
Resistance modification factor for shear, concrete failure modes. Condition B ²	R	-				1.00									

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006894 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

¹Additional setting information is described in Figure 2, installation instructions.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-19 D.5. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2020 NBCC or Annex C of CSA A23.3-19 are used. 3 d₀ = hole diameter.

TABLE 6-BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT(OR CHEMOFAST HOLLOW CARBIDE DRILL BIT)¹

	DESIGN INFO	DMATION	Querra ha a l	Units			Nominal	Rod Diame	ter (inch)		
	DESIGN INFO	RMATION	Symbol	Units	³ /8	1/2	⁵ /8	³ /4	7/ ₈	1	1 ¹ /4
	Minimum em	bedment	h _{ef,min}	mm (in.)	60.3 (2 ³ / ₈)	69.9 (2 ³ / ₄)	79.4 (3 ¹ / ₈)	88.9 (3 ¹ / ₂)	88.9 (3 ¹ / ₂)	101.6 (4)	127.0 (5)
	Maximum em	bedment	h _{ef,max}	mm (in.)	191 (7 ¹ / ₂)	254 (10)	318 (12 ¹ / ₂)	381 (15)	445 (17 ¹ / ₂)	508 (20)	635 (25)
Temperature		istic bond strength in acked concrete	Tk,uncr	N/mm²	15.1	14.7	14.3	13.8	13.4	13	12.1
range A ^{2,3}		istic bond strength in cked concrete	Tk,cr	N/mm²	10.5	10.6	9.4	10.7	10.5	10.3	9.9
Temperature		istic bond strength in acked concrete	Tk,uncr	N/mm²	11.8	11.5	11.2	10.8	10.5	10.1	9.5
range B ^{2,3}	Character cra	Tk,cr	N/mm²	8.2	8.3	7.4	8.3	8.2	8	7.8	
	Dry concrete	Anchor Category	-	-				1			
	Dry concrete	Resistance modification factor	R _d	-				1.00			
	Water-saturated	Anchor Category	-	-				2			
Permissible	concrete	Resistance modification factor	R _{ws}	-				0.85			
installation		Anchor Category	-	-				3			
conditions	Water-filled hole	Resistance modification factor	R _{wf}	-				0.75		101.6 (4) 508 (20) 13 10.3 10.1 10.1	
	(flooded)	Modification factor for Water- filled holes	K_{wf}	-				0.85			
	Underwater	Anchor Category	-	-				2			
	(submerged)	Resistance modification factor	R _{uw}	-				0.85			
Re	duction factor for	seismic tension	⊂(N, seis	-	1.00	1.00	0.90	1.00	0.95	1.00	1.00

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006894 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

¹Bond strength values correspond to concrete compressive strength f'c = 2,500 psi (17.2 N/mm²). For concrete compressive strength, f'c between 2,500 (17.2 N/mm²) psi and 8,000 psi (55.2 N/mm²), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2500)^{0.21}$ [For SI: $(f_c/17.2)^{0.21}$] for uncracked concrete, and $(f_c/2500)^{0.14}$ [For SI: $(f_c/17.2)^{0.14}$] for cracked concrete. ²Temperature range A: Maximum short term temperature = 140°F (60°C), maximum long term temperature = 110°F (43°C); Temperature range B: Maximum short

term temperature = 176°F (80°C), maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 17 percent.

DESIGN INFORMATION Reinforcing bar O.D.		Quanta d	l Inite				Nomina	Bar Size			
DESIG		Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
Reinfo	rcing bar O.D.	da	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.128 (28.6)	1.270 (31.8)
	rcing bar effective cross- nal area	Ase	in.² (mm²)	0.110 (71)	0.200 (129)	0.310 (200)	0.440 (284)	0.600 (387)	0.790 (510)	1.000 (645)	1.270 (819)
	Nominal strength as	N _{sa}	kN	48.9	89	137.9	195.7	266.9	351.4	444.8	564.9
4767 5	governed by steel strength (for a single anchor)	V _{sa}	kN	29.4	53.4	82.7	117.4	160.1	210.8	266.9	338.9
ASTM A615, A767 Grade 75	Reduction factor for seismic shear	𝒫 _{V,seis}	-				0.	.70			
STM A Gra	Resistance modification factor for tension ³	R	-				0.	.70			
¥	Resistance modification factor for shear ³	R	-				0.	.65			
~	Nominal strength as	Nsa	kN	44	80.1	124.1	176	240	316	400	508
A996	governed by steel strength (for a single anchor)	Vsa	kN	26.4	48	74.5	105.7	144.1	189.8	240.2	305
ASTM A615, A767, A996 Grade 60	Reduction factor for seismic shear	𝒫 _{V,seis}	-				0.	.70			
M A61 Gr	Resistance modification factor for tension ³	R	-				0.	.70			
ASTI	Resistance modification factor for shear ³	R	-				0.	.65			
30	Nominal strength as governed by	N _{sa}	kN	39.1	71.2	110.3	156.6	213.5	281.1	355.9	452
ade (steel strength (for a single anchor)	Vsa	kN	23.5	42.7	66.2	93.9	128.1	168.7	213.5	271.2
706 Gr	Reduction for seismic shear	αv,seis					0.	.70			
ASTM A706 Grade 60	Resistance modification factor ϕ for tension ²	R					0	.80			
AS	Resistance modification factor ϕ for shear ²	R					0	.75			
	Nominal strength as	Nsa	kN	29.4	53.4	82.7	117.4				
le 40	governed by steel strength (for a single anchor)	Vsa	kN	17.6	32	49.6	70.5		accordance wi oars are furnis		
ASTM A615 Grade 40	Reduction factor for seismic shear	αv,seis	-		0.7	70		Grade 40 t	through		zes no. 5
STM A	Resistance modification factor for tension ³	R	-				0.	.70			
AS	Resistance modification factor for shear ³	R	-				0.	.65			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006894 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

¹Values provided for common bar material types based on specified strengths and calculated in accordance with CSA A23.3-19 Eq. D.2 and Eq. D.3.

² The tabulated value of the material resistance factors ϕ_{e} and ϕ_{e} , and resistance modification factor, R_{e} applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2020 NBCC or Annex C of CSA A23.3-19 are used. Values correspond to ductile steel elements.

³The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2020 NBCC or Annex C of CSA A23.3-19 are used. Values correspond to brittle steel elements.

⁴In accordance with ASTM A615, Grade 40 bars are furnished only in sizes No. 3 through No. 6.

TABLE 8—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR CHEMOFAST HOLLOW CARBIDE DRILL BIT)¹

	Oh. a.l.	Unite	nits Nominal Bar Size											
DESIGN INFORMATION	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10				
Effectiveness factor for cracked concrete	k _{c,cr}	SI (in-lb)		7 (17)										
Effectiveness factor for uncracked concrete	k _{c,uncr}	SI (in-lb)		10 (24)										
Min. anchor spacing	S _{min}	mm (in.)	48 (1 ⁷ / ₈)	60 (2 ³ / ₈)	77 (3)	95 (3 ³ / ₄)	108 (4 ¹ / ₄)	121 (4 ³ / ₄)	135 (5 ¹ / ₄)	149 (5 ⁷ / ₈)				
Min. edge spacing ⁴	C _{min}	mm (in.)	41 (1 ⁵ / ₈)	44 (1 ³ / ₄)	51 (2)	60 (2 ³ / ₈)	64 (2 ¹ / ₂)	70 (2 ³ / ₄)	76 (3)	82 (3 ¹ / ₄)				
Min. member thickness	h _{min}	mm (in.)		+ 30 + 1 ¹ / ₄)			h _{ef} +	2d ₀ ³						
Critical edge spacing – splitting (for uncracked concrete) ²	C _{ac}	-					2h _{ef}							
Critical anchor spacing – splitting	S _{ac}	-					2·c _{ac}							
Resistance modification factor for tension, concrete failure modes. Condition B ²	R	-		1.00										
Resistance modification factor for shear, concrete failure modes. Condition B ²	R	-		1.00										

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

¹Additional setting information is described in Figure 2, installation instructions.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-19 D.5. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2020 NBCC or Annex C of CSA A23.3-19 are used.

 ${}^{3}d_{0}$ = hole diameter.

TABLE 9—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

	DESIGN INFO		0hal	Units	Nominal Bar Size									
	DESIGN INFO	DRMATION	Symbol	Units	No.3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10		
	Minimum en	h _{ef,min}	mm (in.)	60.3 (2 ³ / ₈)	69.9 (2 ³ / ₄)	79.4 (3 ¹ / ₈)	88.9 (3 ¹ / ₂)	88.9 (3 ¹ / ₂)	101.6 (4)	114 (4 ¹ / ₂)	127.0 (5)			
	Maximum er	nbedment	h _{ef,max}	mm (in.)	191 (7 ¹ / ₂)	254 (10)	318 (12 ¹ / ₂)	381 (15)	445 (17 ¹ / ₂)	508 (20)	572 (22.5)	635 (25)		
Temperatur	Characte unc	T _{k,uncr}	N/mm²	13.4	13.1	12.9	12.7	12.4	12.2	11.7	11.7			
e range A ^{2,3}	Characteristic bond strength in cracked concrete		T _{k,cr}	N/mm²	10	10	9	10	10	10	9.8	9.8		
Temperatur	Characteristic bond strength in uncracked concrete		T _{k,uncr}	N/mm²	10.5	10.3	10.1	9.9	9.7	9.5	9.1	9.2		
e range B ^{2,3}		Characteristic bond strength in cracked concrete			7.8	7.8	7.1	7.8	7.8	7.8	7.7	7.7		
	Drv concrete	Anchor Category	-	-	1									
	Dry concrete	Resistance modification factor	Rď	-	1.00									
	Water-saturated	Anchor Category	-	-	2									
Permissible	concrete	Resistance modification factor	R _{ws}	-				C	.85					
installation		Anchor Category	-	-					3					
conditions	Water-filled hole	Resistance modification factor	R _{wf}	-				C	.75					
	(flooded)	Modification factor for Water- filled holes	Kwf	-				C	.85					
	Underwater	Anchor Category	-	-					2					
	(submerged) Resistance modification facto		Ruw	-	0.85									
Red	duction factor fo	r seismic tension	⊂N,seis	-				1	.00					

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006894 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 N/mm²). For uncracked concrete compressive strength, f_c between 2,500 psi (17.2 N/mm²) and 8,000 psi (55.2 N/mm²), the tabulated characteristic bond strength may be increased by a factor of (f_c / 2500)^{0.18} [For SI: (f_c / 17.2)^{0.18}]. ²Temperature range A: Maximum short term temperature = 140°F (60°C), maximum long term temperature = 110°F (43°C); Temperature range B: Maximum short term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 17 percent.

		0h	11	Nominal Rod Diameter (mm)										
DESI	GN INFORMATION	Symbol	Units	M10	M12	M16	M20	M24	M27	M30				
Threa	ided rod O.D.	da	mm (in.)	10 (0.39)	12 (0.47)	16 (0.63)	20 (0.79)	24 (0.94)	27 (1.06)	30 (1.18)				
	ided rod effective cross- mal area	Ase	mm² (in.²)	58.0 (0.090)	84.3 (0.131)	157 (0.243)	245 (0.380)	353 (0.547)	459 (0.711)	561 (0.870)				
	Nominal strength as governed by steel	N _{sa}	kN	29.0	42.2	78.5	122.5	176.5	229.5	280.5				
Class 5.8	strength (for a single anchor)	Vsa	kN	14.5	25.3	47.1	73.5	105.9	137.7	168.3				
898-1 CIa	Reduction factor for seismic shear	α <i>∨,seis</i>	-				0.70							
SO 89	Resistance modification factor for tension ²	R	-	0.70										
Resistance modification factor for shear ² R - 0.65														
	Nominal strength as governed by steel strength (for a single anchor)	N _{sa}	kN	46.4	67.4	125.6	196	282.4	367.2	448.8				
Class 8.8		V _{sa}	kN	23.0	40.5	75.4	117.6	169.4	220.3	269.3				
898-1 Cla	Reduction factor for seismic shear	α _{V,seis}	-	- 0.70										
SO 89	Resistance modification factor for tension ²	R	-				0.70							
52	Resistance modification factor for shear ²	R	-				0.65							
	Nominal strength as governed by steel	Nsa	kN	40.6	59	109.9	171.5	247.1	229.5	280.5				
⊦-1, steel³	strength (for a single anchor)	V _{sa}	kN	20.3	35.4	65.9	102.9	148.3	137.7	168.3				
3506 Iless	Reduction factor for seismic shear	α _{V,seis}	-				0.70							
ISO A4 stair	Resistance modification factor for tension ²	R	-				0.70							
	Resistance modification factor for shear ²	R	-				0.65							

TABLE 10-STEEL DESIGN INFORMATION FOR METRIC THREADED ROD¹

¹Values provided for common rod material types based on specified strengths and calculated in accordance with CSA A23.3-19 Eq. D.2 and Eq. D.3. Nuts and washers must comply with requirements for the rod.

²The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2020 NBCC or Annex C of CSA A23.3-19 are used. Values correspond to brittle steel elements.

³A4-70 Stainless steel (M8-M24); A4-50 Stainless steel (M27-M30).

TABLE 11—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR CHEMOFAST HOLLOW CARBIDE DRILL BIT)¹

	O www.h.e.l	11			Nomin	al Rod Diamet	er (mm)							
DESIGN INFORMATION	Symbol	Units	M10	M12	M16	M20	M24	M27	M30					
Effectiveness factor for cracked concrete	k _{c,cr}	SI (in-lb)		7 (17)										
Effectiveness factor for uncracked concrete	k _{c,uncr}	SI (in-lb)		10 (24)										
Min. anchor spacing	S _{min}	mm (in.)	50 (2)	60 (2 ³ / ₈)	80 (3 ¹ / ₈)	95 (3 ³ / ₄)	115 (4 ¹ / ₂)	130 (5 ¹ / ₈)	145 (5 ¹ / ₂)					
Min. edge distance	Cmin	mm	40	45	55 (2 ¹ / ₄)	60 (2 ³ / ₈)	70 (2 ³ / ₄)	75 (3)	80 (3 ¹ / ₈)					
ougo ulotanoo		(in.)	(1 ⁵ /8)	(1 ³ / ₄)	See Tab	le 1 of this repor	rt for smaller edg	ge distance wit	า 0.45 <i>T</i> _{max}					
Min. member thickness	h _{min}	mm (in.)		_{ef} + 30 _f + 1 ¹ / ₄)		$h_{ef} + 2d_0^{-3}$								
Critical edge distance - splitting (for uncracked concrete) ²	Cac	-				2h _{ef}								
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	-		1.00										
Resistance modification factor for shear, concrete failure modes, Condition B ²	R	-				1.00								

¹Additional setting information is described in Figure 2, installation instructions.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-19 D.5. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2020 NBCC or Annex C of CSA A23.3-19 are used. ³ d₀ = hole diameter.

TABLE 12—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR CHEMOFAST HOLLOW CARBIDE DRILL BIT)¹

	DESIGN INFO		Symbol	Units	Nominal Rod Diameter (inch)								
	DESIGN INFO	RMATION	Symbol	Units	M10	M12	M16	M20	M24	M27	M30		
	Minimum em	bedment	h _{ef,min}	mm (in.)	60 (2.4)	70 (2.8)	80 (3.1)	90 (3.5)	96 (3.8)	108 (4.3)	120 (4.7)		
	Maximum em	bedment	h _{ef,max}	mm (in.)	200 (7.8)	240 (14.8)	320 (12.6)	400 (15.8)	480 (18.8)	540 (21.4)	600 (23.6)		
Temperature		stic bond strength in acked concrete	T _{k,uncr}	N/mm²	15	14.8	14.2	13.7	13.2	12.7	12.3		
range A ^{2,3}	Characteri crae	T _{k,cr}	N/mm²	10.5	10.6	9.4	10.7	10.5	10.3	9.9			
Temperature	Character uncra	Tk,uncr	N/mm²	11.8	11.6	11.1	10.7	10.3	10	9.7			
range B ^{2,3}	Characteri crae	T _{k,cr}	N/mm²	8.2	8.3	7.4	8.3	8.2	8	7.8			
	Day Concrete	Anchor category	-	-	1								
	Dry Concrete	Resistance modification factor	R _d	R _d -				1.00					
	Water-saturated	Anchor category	-	-	2								
Permissible	Concrete	Resistance modification factor	R _{ws}	-	0.85								
installation		Anchor category	-	-				3					
conditions	Water-filled hole	Resistance modification factor	R _{wf}	-				0.75					
	(flooded)	Modification factor for water filled holes	K_{wf}	-	0.85								
	Underwater	Anchor Category	-	-				2					
	(submerged)	Resistance modification factor	Ruw	-		0.85							
Re	eduction factor for	seismic tension	∝N,seis	-	1.00	1.00	0.90	0.94	0.94	1.00	1.00		

¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 N/mm²). For concrete compressive strength, f_c between 2,500 psi (17.2 N/mm²) and 8,000 psi (55.2 N/mm²), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2500)^{0.21}$ [For **SI**: $(f_c/17.2)^{0.21}$] for uncracked concrete and $(f_c/2500)^{0.14}$ [For **SI**: $(f_c/17.2)^{0.14}$] for cracked concrete. See Section 4.1.4 of this report. ²Temperature range A: Maximum short term temperature = 140°F (60°C), maximum long term temperature = 110°F (43°C); Temperature range B: Maximum short term temperature = 140°F (52.200)^{0.21} [For **SI**: $(f_c/17.2)^{0.21}$] for uncracked concrete.

term temperature = 176°F (80°C), maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 17 percent.

TABLE 13—STEEL DESIGN INFORMATION FOR METRIC REINFORCING BARS¹

DEOLO		Querry has l	Unite	Nominal Bar Size										
DESIG	N INFORMATION	Symbol	Units	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32			
Reinfor	cing bar O.D.	da	mm (in.)	10 (0.394)	12 (0.472)	14 (0.551)	16 (0.630)	20 (0.787)	25 (0.984)	28 (1.102)	32 (1.260)			
Reinforcing bar effective cross- sectional area		Ase	mm² (in.²)	78.5 (0.121)	113.1 (0.175)	153.9 (0.239)	201.1 (0.312)	314.2 (0.487)	490.9 (0.761)	615.8 (0.954)	804.2 (1.247)			
	Nominal strength as	N _{sa}	kN	43.2	62.2	84.7	110.6	172.8	270.0	338.7	442.3			
~	governed by steel strength (for a single anchor)	Vsa	kN	25.9	37.3	50.8	66.4	103.7	162.0	203.2	265.4			
BSt 500	Reduction factor for seismic shear	α _{V,seis}	-	0.70										
DIN 488 E	Resistance modification factor for tension, concrete failure modes, Condition B ²	R	-	0.70										
	Resistance modification factor for shear, concrete failure modes, Condition B ²	R	-	0.65										

¹Values provided for common bar material types based on specified strengths and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2b or ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-19 D.5. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2020 NBCC or Annex C of CSA A23.3-19 are used.

TABLE 14—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC REINFORCING BARS IN HOLES DRILLED WITH ALL DRILLING METHODS¹

						Nominal	Bar Size						
DESIGN INFORMATION	Symbol	Units	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32			
Effectiveness factor for cracked concrete	k _{c,cr}	SI (in-lb)					7 7)						
Effectiveness factor for uncracked concrete	k _{c,uncr}	SI (in-lb)					0 24)						
Min. anchor spacing	S _{min}	mm (in.)	50 (2)	60 (2 ³ / ₈)	70 (2 ³ / ₄)	80 (3 ¹ / ₈)	95 (3 ³ / ₄)	120 (4 ⁵ / ₈)	135 (5 ¹ / ₄)	150 (5 ⁷ / ₈)			
Min. edge spacing	Cmin	mm (in.)	40 (1 ⁵ /8)	45 (1 ³ / ₄)	50 (2)	55 (2 ¹ / ₄)	60 (2 ³ / ₈)	70 (2 ³ / ₄)	75 (3)	85 (3 ¹ / ₈)			
Min. member thickness	h _{min}	mm (in.)		+ 30 - 1 ¹ / ₄)			h _{ef} +	2 d ₀ ³		•			
Critical edge spacing – splitting (for uncracked concrete) ²	Cac	-				2	h _{ef}						
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	-		1.00									
Resistance modification factor for shear, concrete failure modes, Condition B ²	R	-		1.00									

¹Additional setting information is described in Figure 2, installation instructions.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-19 D.5. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2020 NBCC or Annex C of CSA A23.3-19 are used. ³d₀ = hole diameter.

TABLE 15—BOND STRENGTH DESIGN INFORMATION METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR CHEMOFAST HOLLOW CARBIDE DRILL BIT)¹

 			Ourseland	11			Nom	inal Rod I	Diameter	(inch)			
I	DESIGN INFOR	(MATION	Symbol	Units	ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Minimum embe	edment	h _{ef,min}	mm. (in.)	60 (2.4)	70 (2.8)	75 (3.0)	80 (3.1)	90 (3.5)	100 (3.9)	112 (4.4)	128 (5.0)		
Maximum emb	edment		h _{ef,max}	mm (in.)	200 (7.9)	240 (9.4)	280 (11.0)	320 (12.6)	400 (15.7)	500 (19.7)	560 (22.0)	640 (25.2)	
Temperature	Characteristic bon uncracked concre		Tk,uncr	N/mm²	13.3	13.2	13	12.8	12.5	12.2	12	11.7	
	Characteristic bon cracked concrete	d strength in	Tk,cr	N/mm²	10	10	10	9	10	10	9.8	9.8	
Temperature	Characteristic bond strength in uncracked concrete		Tk,uncr	N/mm²	10.4	10.3	10.2	10	9.7	9.5	9.4	9.2	
	Characteristic bon cracked concrete	Tk,cr	N/mm²	7.8	7.8	7.8	7.1	7.8	7.8	7.7	7.7		
	Dry Concrete		-	-		1							
	Dry Concrete	Resistance modification factor	R₫	-	1.00								
	Water-saturated	Anchor category	-	-		2							
Permissible	Concrete	Resistance modification factor	R _{ws}	-		0.85							
installation		Anchor category	-	-				:	3				
conditions	Water-filled hole	Resistance modification factor	R _{wf}	-				0.	75				
	(flooded)	Modification factor for water filled holes	K _{wf}	-				0.	85				
	Underwater	Anchor Category	-	-					2				
	(submerged)	Resistance modification factor	Ruw	-	0.85								
Reduction facto	or for seismic tensi	on	∝ <i>N, seis</i>	-				1	.0				

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006894 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 17 percent.

¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 N/mm²). For uncracked concrete compressive strength, f_c between 2,500 psi (17.2 N/mm²) and 8,000 psi (55.2 N/mm²), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2500)^{0.18}$ [For SI: $(f_c/17.2)^{0.18}$]. See Section 4.1.4 of this report.

²Temperature range A: Maximum short term temperature = 140°F (60°C), maximum long term temperature = 110°F (43°C); Temperature range B: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Conditions of listing:

- 1. The listing report addresses only conformance with the standards and code sections noted above.
- 2. Approval of the product's use is the sole responsibility of the local code official.
- 3. The listing report applies only to the materials tested and as submitted for review by ICC-ES.
- 4. Anchor sizes, dimensions, minimum embedment depths and other installation parameters are as set forth in this listing report.
- 5. Anchors must be limited to use in cracked and uncracked normal-weight concrete and lightweight concrete having a specified compressive strength, *f*_c, of 2,500 psi (17.2 MPa) to 8,500 psi (58.6 MPa).
- 6. The values of *f*'_c, used for calculation purposes must not exceed 55 MPa. The values of *f*'_c, used for calculation of tension resistance must be limited to 17.2 Mpa maximum for EU metric reinforcing bars used as anchorage in cracked concrete only.
- 7. Limit states design values must be established in accordance with this listing report.
- 8. The use of fatigue or shock loading for these anchors under such conditions is beyond the scope of this listing report.
- 9. Anchors may be used to resist short-term loading due to wind or seismic forces in locations designed according to NBCC 2020.
- 10. Where not otherwise prohibited in the code as referenced in CSA A23.3-19, Chemofast EP 800 adhesive anchor system are permitted for use with fire-resistance-rated construction provided that at least one of the following conditions is fulfilled:
 - Anchors are used to resist wind or seismic forces only.
 - b. Anchors that support gravity load–bearing structural elements are within a fire-resistive envelope or a fire-resistive membrane, are protected by approved fire-resistive materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
 - c. Anchors are used to support nonstructural elements.
- 11. Use of zinc-coated carbon steel anchors is limited to dry, interior locations.
- 12. Use of anchors made of stainless steel as specified in this report are permitted for exterior exposure and damp environments.
- Steel anchoring materials in contact with preservative-treated and fire-retardant-treated wood shall be of zinc-coated steel or stainless steel. The minimum coating weights for zinc-coated steel shall be in accordance with ASTM A153.
- 14. Installation of anchors in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed by personnel certified by an applicable certification program, and the certification shall include written and performance tests in accordance with the ACI/CRSI Adhesive Anchor Installer Certification program, or equivalent in accordance with CSA A23.3-19 D.10.2.3. The installation shall be continuously inspected during installation by an inspector specially approved for that purpose. The special inspector shall furnish a report to the licensed design professional and building official that the work covered by the report has been performed and that the materials used and the installation procedures used conform with the approved contract documents and the MPII in accordance with CSA A23.3-19 D.10.2.4.