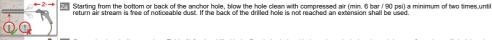
ESR-4901

1. Setting instructions for solid base material with diamond drilling recaution: Wear suitable eye and skin protection. Avoid inhalation of dusts during drilling and/or removal. (see dust extraction equipment by

Drilling


(3)

nstallati

🕠 Drill a hole into the base material with a diamond drill tool to the size and embedment required by the selected steel hardware element (see Table 4).

In case of standing water in the drilled hole, all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning

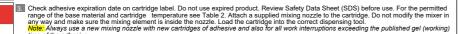
CAC: Cleaning (dry, water saturated and water-filled) for all bore hole diameter in uncracked/cracked concrete

Determine brush diameter (see Table 3) for the drilled hole. Brush the hole with the selected wirebrush a minimum of two times (2x). A brush extension (supplied by Chemofast Anchoring GmbH) must be used for drill hole depth > 6" (150mm). The wire brush diameter must be checked periodically during use (dbrush > db,min, see Table 3a or 3b). The brush should resist insertion into the drilled hole - if not the brush is too small and must be replaced with the proper brush diameter. If the back of the drilled hole is not reached a brush extension shall be used

on: Wear suitable eye and skin protection. Avoid inhalation of dusts during drilling and/or removal. (see dust extraction equipment by

III Drill a hole into the base material with a hammer drill tool to the size and embedment required by the selected steel hardware element (see Table 4). The tolerances of the carbide drill bit must meet the requirements of ANSI Standard B212.15. For bore holes drilled with the

Chemofast hollow drill bit system (consisting of Heller Duster Expert drill bits and a Class M vacuum with air flow 150m³/h resp. 42l/s resp. 90cfm; the vacuum must be on!) no further cleaning is required • go to Step 3, otherwise to Step 2a for CAC hole cleaning instructions. In case of standing water in the drilled hole, except for submerged concrete, all the water has to be removed from the hole (e.g. vacuum,


2c Finally blow the hole clean again with compressed air (min. 6 bar / 90 psi) a minimum of two times, until return air stream is free of noticeable dust. If the back of the drilled hole is not reached an extension shall be used. When finished the hole should be clean and free of dust, debris, ice grease oil or other foreign material

UWC: Cleaning (submerged) for all bore hole diameter in uncracked and cracked concrete

Chemofast to minimize dust emissions)

1	2a		bottom or nsion shal	ne bore hole	e, rinse/flush	the hole	clean	until clean	water	comes ou	ut. If the	back of th	ne drilled h	nole is not
ı														

- Determine brush diameter (see Table 3) for the drilled hole. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by Chemofast Anchoring GmbH) must be used for drill hole depth > 6" (150mm). The wire brush diameter must be checked periodically during use (dbrush > db.min, see Table 3a or 3b). The brush should resist insertion into the drilled hole - if not the brush is too small and must be replaced with the proper brush diameter. If the back of the drilled hole is not reached a brush extension shall be used.
- En Finally, starting from the bottom or back of the bore hole, rinselflush the hole clean until clean water comes out. If the back of the drilled hole is

- 4. Prior to inserting the anchor rod or rebar into the filled drilled hole, the position of the embedment depth has to be marked on the anchor. Verify anchor element is straight and free of surface damage.
- 5. Adhesive must be properly mixed to achieve published properties. Prior to dispensing adhesive into the drilled hole, separately dispense at least three full strokes of adhesive through the mixing nozzle until the adhesive is a consistent gray or red color. Review and note the published working and cure times (see Table 2) prior to injection of the mixed adhesive into the cleaned anchor hole.
- Fill the cleaned hole approximately two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. Slowly withdraw the mixing nozzle as the hole fills to avoid creating air pockets or voids. If the bottom or back of the anchor hole is not reached with the mixing nozzle only an extension tube supplied by Chemofast Anchoring GmbH (Cat# 16009 or Cat# 16004) must be used with the mixing nozzle. In case of using the extension tube VL16/1,8 (Cat# 16004), cut the tip of the mixer nozzle at position "X"

Piston plugs (see Table 3a or 3b) must be used with and attached to mixing nozzle and extension tube for

- overhead installations and installations between horizontal and overhead
- all installations with drill hole depth do >10" (250mm)

all installations in submerged bore holes
 with anchor rod 5/8" to 1-1/4" (M16 to M30) and rebar sizes #5 to #11 (⊘14 to ⊘36).

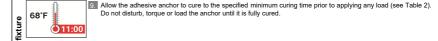
Insert piston plug to the back of the drilled hole and inject as described in the method above. During installation the piston plug will be naturally extruded from the drilled hole by the adhesive pressure. Attention! Do not install anchors overhead or upwardly inclined without installation hardware supplied by Chemofast and also receiving proper training and/or certification. Contact Chemofast for details prior to use.

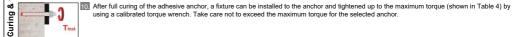
- The anchor should be free of dirt, grease, oil or other foreign material. Push clean threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Observe the gel (working) time.
- 8. Be sure that the anchor is fully seated at the bottom of the hole and that some adhesive has flowed from the hole and all around the top of the anchor. If there is not enough adhesive in the hole, the installation must be repeated. For overhead applications and applications between horizontal and overhead the anchor must be secured from moving/falling during the cure time (e.g. wedges). Minor adjustments to the anchor may be performed during the gel time but the anchor shall not be moved after placement and during cure
- g Allow the adhesive anchor to cure to the specified minimum curing time prior to applying any load (see Table 2). Do not disturb, torque or load the anchor until it is fully cured
- After full curing of the adhesive anchor, a fixture can be installed to the anchor and tightened up to the maximum torque (shown in Table 4) by using a calibrated torque wrench. Take care not to exceed the maximum torque for the selected anchor

	Temp	erature of bas	e material	Maximum working time	Initial curing time 1)	Full curing time					
41 °F	(+5 °C) to 49 °F (+9 °C)			80 min	24 h	48 h					
50 °F	(+10 °C)	to 58 °F	(+14°C)	60 min	60 min 15 h						
59 °F	(+15 °C)	to 67 °F	(+19°C)	40 min	10 h	20 h					
68 °F	(+20 °C)	to 76 °F	(+24°C)	30 min	5 h	11 h					
77 °F	(+25 °C)	to 85 °F	(+29°C)	12 min	4 h	9 h					
86 °F	(+30 °C)	to 103 °F	(+39°C)	8 min	3 h	6 h					
	104 °F (+40 °C)		7 min	2 h	4 h					
Cartridge ter	mperature mus	t be between 4	1°F (+5°C) and 104°F (+40°C)								

initial cure times are for post-installed rebar applications only. After the initial curing time, the installation of connecting reinforcements and formwork attachments is permitted

SPCAC: Cleaning for all bore hole diameter in uncracked concrete


300		Starting from the bottom or back of the bore hole, rinse/flush the hole clean until clean water comes out. If the back of the drilled hole is not reach an extension shall be used.
-----	--	---


- Determine brush diameter (see Table 3) for the drilled hole. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by Chemofast Anchoring GmbH) must be used for drill hole depth > 6" (150mm). The wire brush diameter must be checked extension (supplied by chemical statistics) with the proper brush should be used to full more depth to (150mm). The when the did in did interest mass to extension should be replaced with the proper brush diameter. If the back of the drilled hole is not reached a brush extension shall be used.
- constantly, starting from the bottom or back of the bore hole, rinse/flush the hole clean until clean water comes out. If the back of the drilled hole is not cleaning
 - Starting from the bottom or back of the anchor hole, blow the hole clean with compressed air (min. 6 bar / 90 psi) a minimum of two times, until return air stream is free of noticeable dust. If the back of the drilled hole is not reached an extension shall be used.
 - Determine brush diameter (see Table 3) for the drilled hole. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by Chemofast Anchoring GmbH) must be used for drill hole depth > 6" (150mm). The wire brush diameter must be checked periodically during use (dbrush > db,min. see Table 3a or 3b). The brush should resist insertion into the drilled hole - if not the brush is too small and must be replaced with the proper brush diameter. If the back of the drilled hole is not reached a brush extension shall be used.
 - ←2→ 🎢 Finally blow the hole clean again with compressed air (min. 6 bar / 90 psi) a minimum of two times, until return air stream is free of noticeable dust. If the back of the drilled hole is not reached an extension shall be used. When finished the hole should be clean and free of dust, debris, ice grease, oil or other foreign material
 - Check adhesive expiration date on cartridge label. Do not use expired product. Review Safety Data Sheet (SDS) before use. For the permitted range of the base material and cartridge temperature see Table 2. Attach a supplied mixing nozzle to the cartridge. Do not modify the mixer in any way and make sure the mixing element is inside the nozzle. Load the cartridge into the correct dispensing tool. Note: Always use a new mixing nozzle with new cartridges of adhesive and also for all work interruptions exceeding the published gel (working)
 - 4. Prior to inserting the anchor rod or rebar into the filled drilled hole, the position of the embedment depth has to be marked on the anchor. Verify anchor element is straight and free of surface damage
 - Adhesive must be properly mixed to achieve published properties. Prior to dispensing adhesive into the drilled hole, separately dispense at least three full strokes of adhesive through the mixing nozzle until the adhesive is a consistent gray or red color. Review and note the published working and cure times (see Table 2) prior to injection of the mixed adhesive into the cleaned anchor hole.
 - Fill the cleaned hole approximately two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. Slowly withdraw the mixing nozzle as the hole fills to avoid creating air pockets or voids. If the bottom or back of the anchor hole is not reached with the mixing nozzle only an extension tube supplied by Chemofast Anchoring GmbH (Cat# 16009 or Cat# 16004) must be used with the mixing nozzle. In case of using the extension tube VL16/1,8 (Cat# 16004), cut the tip of the mixer nozzle at position "X".
 - Piston plugs (see Table 3a or 3b) must be used with and attached to mixing nozzle and extension tube for:
 - overhead installations and installations between horizontal and overhead - all installations with drill hole depth do >10" (250mm)
 - with anchor rod 5/8" to 1-1/4" (M16 to M30) and rebar sizes #5 to #10 (Ø14 to Ø32).

with piston plug: Insert piston plug to the back of the drilled hole and inject as described in the method above. During installation the piston plug will be naturally extruded from the drilled hole by the adhesive pressure. Attention! Do not install anchors overhead or upwardly inclined without installation

hardware supplied by Chemofast and also receiving proper training and/or certification. Contact Chemofast for details prior to use.

- The anchor should be free of dirt, grease, oil or other foreign material. Push cleanthreaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Observe the gel (working) time. 00
- Be sure that the anchor is fully seated at the bottom of the hole and that some adhesive has flowed from the hole and all around the top of the be active that the another is fully sealed at the bottom the folder and that some adhesive has flowed from the folder and another the policy and another. If there is not enough adhesive in the hole, the installation must be repeated. For overhead applications and applications between horizontal and overhead the anchor must be secured from moving/falling during the cure time (e.g. wedges). Minor adjustments to the anchor may be performed during the gel time but the anchor shall not be moved after placement and during cure. 1

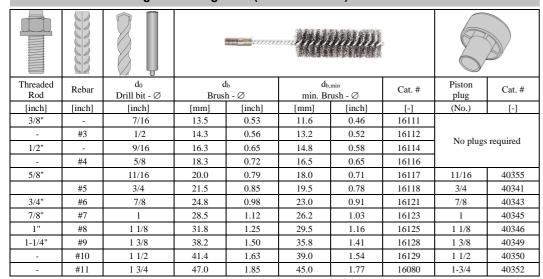
00

0

0

(3)

(1)


68°F

with piston plug.

(- AN > 2

3a. Parameter cleaning and setting tools (fractional sizes)

3b. Parameter cleaning and setting tools (metric sizes)

				and S ection								
Threaded Rod	Rebar	d_0 Drill bit - \varnothing		l _b h - ∅		_{,min} rush - Ø	Cat. #	Piston plug	Cat. #			
[mm]	[mm]	[mm]	[mm]	[inch]	[mm]	[inch]	[-]	(No.)	[-]			
M10	-	12	13.5	0.53	12.5	0.41	16111					
M12	10	14	15.5	0.61	14.5	0.49	16113	No plugs	s required			
-	12	16	17.5	0.69	16.5	0.57	16115					
M16	14	18	20.0	0.79	18.5	0.65	16117	18 40340				
-	16	20	22.0	0.87	20.5	0.73	16119	20	40342			
M20	-	22	24.0	0.94	22.5	0.81	16120	22	40343			
-	20	25	27.0	1.06	24.5	0.89	16122	25	40345			
M24	-	28	30.0	1.18	28.5	0.96	16124	28	40346			
M27	-	30	31.8	1.25	30.5	1.12	16125	30	40347			
-	25	32	34.0	1.34	32.5	1.20	16126	32	40348			
M30	28	35	37.0	1.46	35.5	1.28	16127	35	40349			
-	32	40	43.5	1.71	40.5	1.40	16130	40	40351			
-	36 45 47.0 1.85				45.0	1.77	16080	45	40352			

4. Anchor property / Setting information (fractional and metric sizes)

4. Allohor property / Octum	A Antonio Property / Octaing information (national and metric sizes)																															
		Nomi	nal thre	eaded r	od (fra	ctional)		Nom	minal threaded rod (metric)				Reinforcing bar (fractional)								Reinforcing bar (metric)										
			i	nch; ft	lb.						mm; Nı	n				inch; ftlb.								mm; Nm								
Anchor size	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1-1/4"	M10	M12	M16	M20	M24	M27	M30	#3	#4	#5	#6	#7	#8	#9	#10	#11	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	Ø 36
d_s = Nominal anchor rod diameter	0.375	0.500	0.625	0.750	0.875	1.000	1.250	10	12	16	20	24	27	30	3/8	1/2	5/8	3/4	7/8	1	1-1/8	1-1/4	1-3/8	10	12	14	16	20	25	28	32	36
$d_o(d_{bit})$ = Nominal ANSI drill bit size	7/16	9/16	11/16	7/8	1	1-1/8	1-3/8	12	14	18	22	28	30	35	1/2	5/8	3/4	7/8	1	1-1/8	1-3/8	1-1/2	1-3/4	14	16	18	20	25	32	35	40	45
Parameter valid for anchors	ameter valid for anchors																															
$T_{max} = $ Maximum torque	202)	30	44	66	96	147	221	20	40	80	120	170	250	300	202)	30	44	66	96	147	185	221	-	20	40	45	80	120	175	250	300	-
$h_{ef,min} = $ Minimum embedment	2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	5	60	70	80	90	96	108	120	2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	4-1/2	5	-	60	70	75	80	90	100	112	128	-
$h_{ef,max} = $ Maximum embedment	7-1/2	10	12-1/2	15	17-1/2	20	25	200	240	320	400	480	540	600	7-1/2	10	12-1/2	15	17-1/2	20	22-1/2	25	-	200	240	280	320	400	500	560	640	-
$s_{min} = Min. spacing$	1-7/8	2-1/2	3	3-3/4	4-1/4	4-3/4	5-7/8	50	60	80	95	115	130	145	1-7/8	2-1/2	3	3-3/4	4-1/4	4-3/4	5-1/4	5-7/8	-	50	60	70	80	95	120	135	150	-
c_{min} = Min. edge distance (100% T_{max})	1-5/8	1-3/4	2	2-3/8	2-1/2	2-3/4	3-1/4	40	45	55	60	70	75	80	1-5/8	1-3/4	2	2-3/8	2-1/2	2-3/4	3	3-1/4	-	40	45	50	55	60	70	75	85	-
$c_{min} = Min.$ edge distance (45% T_{max}^{1})		-		1	.75		2.75		-			15		70		-		1.	.75		2.	75	-		-			15		7	70	-
$h_{min} =$ Minimum member thickness	h_{ef} +	1-1/4			$h_{ef} + 2a$	l_o		hef	+ 30			$h_{ef} + 2a$	l_o		h_{ef} +	1-1/4				$h_{ef} + 2a$	l_o				$h_{ef} + 30$)			h _{ef} -	+ 2d _o		
Parameter valid for post-installed rebar																																
$h_{ef,min} = $ Minimum embedment				-							-				2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	4-1/2	5	5-1/2	60	70	75	80	90	100	112	128	128
$h_{ef,max} = \text{Maximum embedment (PIR)}$	Maximum embedment (PIR) -		-					22-1/2	30	37-1/2	45	52-1/2	60	67-1/2	75	82-1/2	600	720	840	960	1200	1500	1680	1920	2160							

 $[\]frac{1}{1}$ s_{min} = 5xd_s. $\frac{2}{1}$ for ASTM 36 and F1554 Grade 36, T_{max} = 15 ft.-lb.

5. EP 800 adhesive anchor system and accessories

Injection tools		Cartridge system	Extra mixing nozzles	Piston Plug	Compressed air nozzle (min. 90 psi)		Extension with wood handle
9,5 fl. oz. dispenser	Cat. #30006 Manual tool	EP800 9,5 fl. oz. (280mL)					
13,5 fl. oz. dispenser	Cat. #30215 Manual tool	EP800 13,5 fl. oz. (400mL)			42	(Cat. #16009)	(Cat#16132)
	Cat. #30216 Manual tool Cat. #30220 Pneumatic tool	EP800 20 to 20.5 fl. oz. (600 to 610 mL)	Mixing nozzle Cat. #40154) 👊	Extension tube VL16/1,8	Brush extension
50.5 fl. oz. dispensers	Cat. #30202 Pneumatic tool	EP 800 50.5 fl. oz. (1500mL)		(Cat# Table 3a or 3b)	If the bore hole ground is not reached an extension shall be used.		(Cat#16131)

Chemofast Anchoring GmbH MKT Fastening, LLC 1 Gunnebo Drive, Lonoke, AR, 72086, USA

www.MKTFASTENING.com P: 501-676-2222 F: 501-676-7211

6. Post-installed rebar hef ≥ 20d

Cartridge	Injection tools	d_s	$h_{\rm ef}$	Extension tube		
9,5 to 20.5 fl. oz.	Manual tool	≤#5 ≤16 [mm]	≤ 27-1/2 [inch] ≤ 700 [mm]	VL10/0,75		
9,5 to 20.5 fl. oz. 50.5 fl. oz.	Pneumatic tool	≤ #5 ≤ 16 [mm]	≤ 51-1/2 [inch] ≤ 1300 [mm]	(Cat.#16009) or VL16/1,8		
9,5 to 20.5 fl. oz. 50.5 fl. oz.	Pneumatic tool	≤#8 ≤25 [mm]	≤ 39-1/2 [inch] ≤ 1000 [mm]	(Cat.#16004)		
50.5 fl. oz.	Pneumatic tool	≤#11 ≤36 [mm]	≤ 75 [inch] ≤ 2160 [mm]	VL16/1,8 (Cat.#16004)		